SOSTANZE ORGANICHE NELLE ACQUE INDICE DI KUBEL

1 Cosa sono

Sono sostanze organiche presenti in acqua, esse sono costituite principalmente dagli acidi umici del terreno; la loro quantità varia a seconda delle acque: nelle acque potabili sono presenti in tracce, mentre nelle acque derivanti da scarichi urbani sono presenti in quantità rilevanti.

2 Perché si dosano

Si dosano perché sono un importante indice di inquinamento. Tra le sostanze organiche, infatti, ci sono feci, urina e simili e, di conseguenza, anche microrganismi nocivi. E' auspicabile che l'acqua potabile non contenga sostanze organiche o ne contenga pochissime.

3 PRINCIPIO DELL'ANALISI

Le sostanze organiche si possono titolare con KMnO₄ (in adatte condizioni), ma poiché la loro titolazione diretta non è facilmente riproducibile, si preferisce sostituire ad essa una quantità equivalente di C_2 O⁼₄, che si titola in modo riproducibile, facile e relativamente rapido.

Si eseguono in pratica queste operazioni:

- 1) A un campione di acqua si aggiunge una quantità nota e in eccesso di KMnO₄ (a caldo e in ambiente acido): MnO₄ in parte ossida le sostanze organiche, in parte resta inalterato.
- 2) Si aggiunge $C_2O_4^{-}$ in quantità esattamente equivalente al Mn O_4^{-} precedentemente aggiunto.

 MnO_4^- in eccesso residuo distrugge una parte di $C_2O_4^-$ e ne lascia inalterata una quantità, equivalente alle sostanze organiche da dosare (eliminate dalla prima aggiunta di MnO_4^-)

3) Si titola con MnO_4^- il $C_2O_4^-$ (a caldo e in ambiente acido) residuo, che è equivalente alle sostanze da dosare.

Il procedimento si può schematizzare con segmenti proporzionali agli equivalenti delle specie chimiche in gioco.

Sostanze organiche		
MnO-4 aggiunto		
MnO-4 residuo		
$C_2O_4^=$ aggiunto		
$C_2O_4^=$ che si dosa		
(esso è uguale alle so	stanze	
organiche iniziali)		

Oltre alle sostanze organiche, anche altre specie chimiche sono titolate con MnO_4^- , per es. Fe^{++} , S^- , SO_3^- etc. Per queste ragioni è più corretto parlare di INDICE DI KUBEL che di dosaggio di sostanze organiche.

4 REAZIONE

2 MnO + 8H + 5e
$$\rightarrow$$
 Mn + 4H O

$$5$$
 CO \rightarrow 2CO + 2e

$$2MnO + 16 H + 5C O \rightarrow 2Mn + 8H O + 10 CO$$

5 REATTIVI

acido solforico 1:4

soluzione titolata KMnO₄ 0,01 N (da conservare in bottiglia scura)

soluzione titolata $C_2O_4^-$ 0,01 N

Materiale becker, 2 burette (in una, quella per KMnO₄ , evitare il gommino di Mohr),

bunsen, reticella, treppiede.

6 PROCEDIMENTO

In un becker adatto (es. 300 ml) versare 100 ml dell'acqua in esame misurati con accuratezza, aggiungere poi 5 ml di $\rm H_2SO_4~(1:4)$, infine 10 ml di $\rm KMnO_4~0,01~N$ misurati con accuratezza.

Scaldare, lasciar bollire dolcemente 10 minuti: la soluzione dovrebbe restare viola (KMnO₄ in eccesso)

Se per caso la soluzione diventa del tutto incolore, significa che ci sono molte sostanze organiche e KMnO₄ è troppo poco.

Aggiungere altri 10 ml di KMnO₄ e lasciar bollire dolcemente per 10 minuti.

Ripetere tale operazione fino a colore viola.

Aggiungere accuratamente $C_2O_4^-$ 0,01 N: tanti ml quanti sono i ml di KMnO₄ (aggiunti in totale)

Togliere dal fuoco, titolare l'eccesso di C₂O₄ con MnO₄ 0,01 N (temperatura ideale: 60°C)

7 ESPRESSIONE DEI RISULTATI E CALCOLI

I risultati si esprimono indicando la quantità di ossigeno necessario ad ossidare le sostanze organiche, equivalenti al KMnO₄ usato.

Si ha pertanto

$$Eq O_2 = Eq MnO_4$$

$$g O_2 = N * ml$$
PE 1000

$$g O_2 = N * ml * PE$$

1000

e in un litro

$$g O_2 = N * ml * PE * 1000$$

1000 Aliquota

e se vogliamo i mg

$$= N * ml * PE * 10$$

SOSTANZE ORGANICHE = mg di ossigeno necessari per ossidare 1 litro di campione

8 INTERPRETAZIONE DEI RISULTATI

Le sostanze organiche sono indice di inquinamento, quindi il loro contenuto <u>deve</u> essere piccolissimo o, meglio, nullo.

Attualmente le direttive C.E.E. prevedono per la potabilità

 $\begin{array}{lll} \mbox{Acqua soddisfacente} & & < 2 \mbox{ mg O}_2 \mbox{ litro}^{-1} \\ \mbox{Acqua tollerabile} & & \mbox{da 2 mg litro a 5 mg litro}^{-1} \\ \mbox{Acqua NON potabile} & & > 5 \mbox{ mg litro}^{-1} \end{array}$